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?igurel 1 Calculated time paths for the response and recovery of the
populations (measured in biomass Per unit area~ initial
biomass ratios: 50 phytoplankton:  10 zooplankton : 1 small
fish) in a three-tiered aquatic food chain when a -25S
perturbation in the phytoplankton growth rate is applied at
time zero, then removed after 3000 days. *Responsem  paths
are indicated by right-pointing arrows, and ‘recoverym paths
are marked with left-pointing arrowa. Solid, dotted, and
(partially) dashed lines give the paths for phytoplanktont
zooplankton , and small fish, respectively. Note that the
population of small fish falls to a critical level and falls
to return to Its initial level after 3000 days of recovery.



some fraction of the population remains after the stress 1s removed.

Figure 12 illustrates that assumptions as to the shape of the ‘biomass

pyramidm--that is, the ratioa of biomasa-per-unit-area  present for each

trophic level .-can  have a profound effect on the magnitude of the
,

~iflcation Of wturbat~- down the food chain from producer to carnivore.

Here we show that the effect of a -1% change in the growth rate of

phytoplankton is greater on the fish population in a food chain with biomass

ratios of 100 : 10 : 1 (phytoplankton : zooplankton : fish) than for food

chains in which the trophic level ratios are smaller. It should be

remembered that we know only that this result pertains to the simple predator-

prey model we have been studying: the effect of the shape of biomass pyramids

on responses to stress has yet to be investigated for other types of models.

Figure 13 presents the response of the populations in a four-tiered food-

chaln model to a -2% perturbation in the growth rate of the phytoplankton.

Note that, as in the three-tiered case (figure 6) the relative magnitude of

changes in the populations of the various trophic levels increase as the

organisms get larger. Another similarity i$ that the lag In response to

the perturbation is longer for higher trophic levels. The four-level model

does, however, appear to be more stable: a -2% perturbation in rx re~ult~ In

only a 10% decrease in the steady-state value of the larger fish population,

while the highest trophic level in the three-tiered case is decreased 30% in

population. In the four-tiered model all four populations oscillate in a

damped fashion toward a steady state value. Thi8 is the sort of behavior

that one might expect from a real ecosystem. It is also gratifying to note

that the oscillations in the populations of each predator-prey pair are out of

phase with each other. This makes ecological as well as

As the population of larger fish, for example, declines,

small fish decreases, allowing that population to expand.

mathematical sense.

grazing pressure on

This increase in

25
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Figure 12 The response of three different three-tiered aquatic ecosystems to
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dashed curves give the response of the small fish populations
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small fish creates favorable conditions for the larger fish, which multiply

until the small fish have been overgrazed. At this point the population of

larger fish atarta to decline, the small fish start to increaae, and the cycle

starta again.
#
Figures 14 and 15 show the response

changes in rx$ and chart recovery paths

of the four-tiered ecosystem to a -2%

for cases in which the perturbation is

removed after 2000 and 4000 days, respectively. These two figures illustrate

how important the timinq of the removal of a stress can be. Uhen the stress

is removed after 2000 days there is a pronounced lag in the return path of the

larger fish population. After 2000 days of recovery that population is still

less! than Itg pre-perturbation level. If the stress is removed after 4000

days, the population of larger fish returns to its original level after 2000

days, and is actually 10% above its original level after 4000 days of

recovery. This does not imply, certainly, that it would be prudent to delay

the clean-up of a polluted aquatic ecosystem in the hopes that

be faster If one waits longer; it merely Illustrates that the.

perturbed ecosystem may not bea simple monotonic function of

time over which it has been polluted.

recovery will

recovery of a

the lengthof

Our mathematical models tend to validate both the ideal and non-ideal

theoretical hysteresis models. Lower trophic levels tend to return to their

original levels after a relatively short recovery time, and thus show ideal

hysteresis. For higher trophic levels (and especially with ❑ ore severe

stresses) the non-ideal hysteresis model dominates: larger organisms respond

to a stress more slowly and recover more slowly, and frequently fail to return

to their initial positions within a time-frame relevant to policy decisions.

We should note, however, that by the nature of the mathematics used all of the

populations we have modelled will eventually return to their original levels,

given a sufficiently long recovery period.
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?Igure 14 Calculated time paths for the response and recovery of the
populations ina four-tiered aquatic ecosystem (measured in
biomass per unit area, initial biomass ratios: 500
phytoplankton: 100 zooplankton : 10 small fish: 1 larger fish)
to a -2$ perturbation in the phytoplankton growth rate applied
at time zero and removed after 2000 days. ‘Response” paths
are indicated by right-pointing arrowsp and ‘recovery* paths
are marked with left-pointing arrows. The paths for the
respon~es of the phytoplankton, zooplankton, small fish, and
larger fish populatlona  are given by the upper solid curves,
the dotted curves, the partially dashed curves, and the lower
(more highly arched) solid curves, respectively. Note that
the population of larger fish falls to return to its original
position after 2000 days of recovery.
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Figure 15 Calculated time patha for the response and recovery of the
populations ina four-tiered aquatic ecosystem (measured in
biomasa per unit area, initial bfomaaa ratios: 500
phytoplankton:  100 zooplankton : 10 small fish: 1 larger fish)
to a -2% perturbation in the phytoplankton  growth rate applied
at time zero and removed after 4000 days. HResponse” patha
are indicated by right-pointing arrows? and ‘recoveryw paths
are marked with left-pointing arrows. The paths for the
re~ponae~ of the phytoplankton, zooplankton, small fish, and
larger fish populatlona  are given by the upper solid curves,
the dotted curves, the partially daahed curves, and the lower
(more highly arched) solid curves, respectively. Note that
the population of larger fish returns to its original position
after 2000 days of recovery and actually overahoot~ ita
level by 4000 days after the perturbation is removed.
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We expect that the addition of higher trophic levels including larger,

longer-lived organlmu!! will show the non-ideal hysteresis model to be more

useful for population changes occuring within  a time-frame relevant to policy-

making.
,

Discussion

14athematical  models of ecosystem perturbations

(Patten, 1975; O’Neill, 1976) and aquatic ecology

are often used in ecology

(0’?4elia, 1972; Bierman et

al, 1980; Inoue et al, 1981). The drawbacks of such models are now

sufficiently well understood as to allow for their restricted use.

Our mathematically-derived curves for the pollution and recovery ofan

aquatic

closely

above.

ecosystem demonstrate a hysteresis effect. These curves agree

with the ideal and non-ideal conceptual hysteresis models described

We can use the information in our mathematically-derived curves to

choose which of the conceptual models is more reallstic.

The non-ideal conceptual model selected by this process is of great

interest since

as commercial

their original

it forecasts that the most economically valuable species, such

and sports fish, will not directly and reversibly return to

levels. This is due to the time lags that come about in part

because organisms in higher trophic levels are slower to multiply and in part

because increases in these levels must follow recovery of their prey

populations.

in ecosystems

Our model

that we have

continuous.

This type of sustained hysteresis effect is apparently inherent

including linked trophic levels.

differs from many perturbation models (e.g. O’Neill, 1976) in

assumed that the disturbance caused by pollution is small but

This kind of small change is to be

pollution, where sophisticated treatment of waste is

expected from ‘modern”

mandated and disposal of

the end product of the treatment process cannot be postponed or diverted.
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Sewage and Industrial-waste effluents from large cities or companies are

examples of such waate streams. Similarly, it is unlikely that total

restoration of a grossly polluted ecosystem would be considered. Rather, a

shall upgrading (e.g. through control of point-sources of toxlo metals, a

decrease in suspended solids, or a reduction in chlorine loading) of a

partially restored or partially damaged system is envisaged, as opposed to a

massive ecological change. This sort of approach

control strategies currently used in the U.S.

There are, hcwever, two potential drawbacks to

Is typical of pollution-

our simple mathematical

model. First, pollution-induced changes in real aquatic ecosystems are

unlikely to be quite as steady and continuous as we have modeled them For

example, many fish scarcely feed over the winter, and are thus unaffected by

decreases in algae or zooplankton populations over that time period. Second,

our model predicts that small fish will rather quickly be forced nearly to

extinction If larger (e.g. 2S%) continuous depressions of primary production

are used. This is probably unrealistic due to the patchy nature of the

seasonal and spatial distribution of food for higher-trophic-level  organisms.

We expect that some clarification of these drawbacks will result from our

future comparisons of the simple Trophic-Link Model (three trophic and four

levels) with a five-level version, and the comparison of both of these with

real data (yet to be assembled).

Our deterministic TL14 may also be insensitive to other likely ecosystem

stresses that are stochastic in nature. A cool spring and summer may, for

example, result in the year’s juvenile fish crop being undersized at the end

of the growth season, leaving them more vulnerable to camlballsm  overwinter

(Kipling, 1976). How would such a random event affect the hysteresis 100pa

we have modeled, especially in the recovery phase? ln progressing from a
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deterministic to a Stochastic model ling approach, the major difference we

would anticipate would be that the position of the svtem would be described

in probabilistic terms. For example, with respect to the -25$ perturbation

shown in figure 11, instead of

l~w after 3000 days with a

probability of 0.9S and have

critical at some other time.

the small fish population becoming critically

probability of one, it might do so with a

an additional probability of 0.1 of becoming

Ginzburg et al (1982)

obtaining such extinction probabilities within the

single-species population model. We intend to

approach is feasible for a multi-species model with

present a methodology for

framework of a stochastic

consider whether a similar

realistic parameters.

lie realize that the results of the HTLN are dependent on the form of the

different differential equations used, the values chosen for the parameters,

the method of solution of the equations,

ecosystem that the model describes.

changes in the form and parameters of

and the functional components of the

We intend, in fact to examine how

HTLM$S affect the results of such

models. While no one trophic link model can predict the behavior of a

variety of ecosystems or even one specific ecosystem, with great certainty,

we hope that advanced forms of the HTLFI can be developed that cant when

properly specified and calibrated with field data from a specific ecosystem,—— —— .

yield meaningful insights into the future behavior of that ecosystem in

response to pollutant stresses. This does not mean that we believe any such

model can be used to definitively predict that reducing the annual loading of

compound X by 100 tons per year will result in a 5.5$ increase in the number

of game fish. The appropriate use for a properly calibrated ❑ odel would be

as an aid in making the type of yes/no choices that regulators often face.

Suppose, for example, that a regulator wished to know whether or not to order

the clean-up of a specific lake. If a carefully

HTLM indicated that a substantial fraction of the

33
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game fish would be likely to be lost if clean-up were delayed, the regulator

might, after weighing the evidence, decide to proceed with pollution

abatement. ln such a case it would not matter if the model predicted a 40%,

60f, 80%, or 100% redwtim in fish: the conclusion drawn by the regulator

would be the sama

We feel that the simplicity of the HTIJ4 framework will make it possible to

easily calibrate models for specific situations. These models could then be

run to yield qualitative information that~ because of the simplicity of the

models, can be traced back to allow a better understanding of the ecology

behind the result.

summary

Our initial results suggest that the hysteresis effect may be one reason

why some valuable fisheries resources (e.g. the Great Lakes, where sports

fisheries have failed to re-establish  themselves following pollution control

efforts) thave failed to respond to reductton In pollution- An understanding

of hysteresis phenomena may also make it possible to predict (in an

approximate way) how long it will take to see a recovew of a fish resource.

An equally important application of the concept is to use it to gain a

qualitative feeling for why some components of ecosystems and not others fail

to show ideal hysteresis behavior and consequently become locally extinct.

Further calculations using more trophic levels, different values for key

parameters, and generation times derived from data on natural ecosystems, may

show how useful the hysteresis concept can be for economic evaluation of

pollution-control benefits that may be long delayed by ecosystem hysteresis.
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APPENDIX : DETAIIS OF MA1’lIMAl’ICS—



ASSUMPTIONS FOR THREE-LEVEL MODEL:

dX/dt = rxx(l . X/Kx) - &@y -bxx

dY/dt = ~y~y~ - ~zyz - byy

dZ/dt = %Z~ZyZ - bzZ;

x = Phytoplankton, Y = Zooplankton, Z = Small Fish;

Steady-State Populations: X- = 50, Y* = 10, Z* = 1;

Exy = o.1, Eyz = 0.1, Kx = 100;

tineration Times: Tx = 3 days, Ty = 20 days, Tz = 36o dayg.

Tx -1=rx,TY = (~yBxyX*)-’, Tz = (~z~zY*)-’

so . . .

‘x = (TX]-’  = (3)-1 = 1/3,

Bxy = l/Ty~yx* = (20 x 0.1 x 50)-’ = 10-2,

Byz = l/Tz~zYa = (360 xO.1 X 10)-1 = 1/360.

At Steady-State:

rxxa(l - X*/KX) -  ~x*Y*  -bxx*  = o

QyBXyx*Y4  -  BYZY’Z’ - byy” . 0

~z~zY*Z* - bzZ’ = O.

so .**

bx = (1/3)(1 - 1/2) - (10-2 X 10) = 1/6 - 0.1 = .0666667

by = (0.1 X 10-2 X 50) - (1/360) = 0.05 - 1/360 = 0.04722

bz (0.1 x 1/360 x 10) s 1/3600



ASSUMPTIONS ~ FOUR-LEVEL MODEL:

dX/dt = rxx(l - X/Kx) . Bxyxy -bxX

dY/dt = ~yBXy~ - ~zyZ - byY

dZ/dt =  EyzByzyz - BzfzF - bzz

dF/dt = EzfBzfZF - bfF;

x = Phytoplankton,  Y = Zooplankton, Z = Small Fish, F = Larger Fish;

Steady-State Populations: X- = 500, Y’ = 100, Z* = 10, F* = 1;

EXy = 0.1, Eyz
= 0.1, Ezf = 0.1, Kx = 1000;

Generation Times:  Tx = 3 days, T y
= 20 days, Tz = 360 days, Tf = 108o days.

T x = rx‘1, T
Y = (EXYBXYX*)-’,  Tz  =  (EYZBYZY*)-’, and Tf  =  (EzfBzfz*)-’

s o . . .

‘x = (TX)-l = (3)-’ = 1/39

%y = l/TyEwx*  = (20 x 0.1 x 500)-’ = 10-3,

Byz = l/Tz~zY*  f (360 x 0.1 x 100)-1 = l/3600, and

Bzf = l/TfEzfZ*  = (1o8o X 0.1 X 1 0 )-1 = 1/1080.

At Steady-State:

rxX*( 1 - X“/Kx) - BWX*Y* -bxX* = O

Exy+yX+Ye - BYZYBZ+ - byy= = O

Eyz~zY*Z*  - BzfZ*F+ - bzZ* = O, and

EzfBzfZ*F*  - bfF* = O.

so...

bx = (1/3)(1 - 1/2) - (10-3  X 100)  = 1/6 - 0.1 = .0666667

bY = (0.1 X 10-3 
X 500) - (1/3600 X 10) = 0.05 - 1/360 = 0.04722

bz (0.1 x 1/3600 x 100) - (1/1080) = 1/360 - l/1080 = 1/540, and

bf (0.1 x 1/1080 x 10) = 1/1080.
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LIsmm OF CmPuTRR PRU3RAM ~ TO CALCULATB TIME PAI’FB FOR

TERU$4EVRL  AQUATIC ~ST~ HOD=

This program, which incorporates the NAG subroutine do2ebf, can
be used to solve three coupled differential equations.
..scalars in common

implicit double precision (a-h, o-z)
double precision H, xend
integer 1

,..
..local  s ca l a r s . .

double precision tol, x
integer Ifail, IR. IW, roped, nout

..local  array s..
double precision W(3,21),  Y(3)

..subroutine  references.,
d02ebf

. .
external fen, out, pederv
common xend, H, I
open(8,  file= ’output’)
opens file, named “output”, in which results are to be placed
data nout /$/
write (nout,99996)
write (8,99996)
write (nout,99994)
write (8,99994)
N = 3
rw=21
MPED = O
I R = 2
tol = 10. OdO*”(-5)
write (nout,99999)  tol
write (nout,99998)
write (8,99999) tol
write (8,99998)
X=l)
xend = 1.0d4
Program is now set to calculate a “response” path. To calculate a
“return” path one would substitute post-perturbation values for
y(l-3) below
y(l) = 50.OdO
y(2) = 10.OdO
y(3) = l.OdO
H = (xend-x)/50
Prints out solution at 49 evenly spaced points between x(0) and xend
1=49
lfail = 1
call D02EBF(x, xend, N, y, tol, IR, fen, roped, pederv,

● out,
write
write

W, lW, Ifail)
(nout,99997)  lfail
(8,99997) lfail



subroutine pederv(x, y, PW) “
c

c

c

c

c

c
c
c
c
c
c

c
c

c

..scalar  arguments..
double precision x

..array arguments..
double precision PW(3,3), y(3)

P“w(l, i) = -1.00 d0°2.0dO”(l.0dO/{  3.0dOo100.0dO)) -y(l) +
+ + 1.00d0S(l,0dO/3  .0dO) - 0.0666666666666667d0
+ - (1. OdO/100.0dO)”y(2)
PW(1,2) = (l. OdO\lOO.OdO)Oy(l)
PW(1,3) = O,OdO
PW(2,1) = (l.OdO\lOO.Odl) ”y(2)
PW(2,2) = -(1. OdO/36.0dl)*y(3)  - (4.72222222222d-2) +
+ (l. OdO/lOO.Odl)Oy(l)
PW(2,3) = -(1. OdO/36.0dl)”y(2)
PW(3,1) = O.OdO
PW(3,2) = (1.0dO/36.0d2)-y(3)
PW(3,3) = (1. OdO/36.0d2)*y(2) - 1.0000 dO”(l.OdO/3.6d2)
return
end
subroutine out(xj y)

..scalar arguments..
double precision x, u
..array arguments..

double precision y(3)
double precision z(3)
u allows time to be counted “backwards” (for return paths), while z(3)
is a set of variables that allow the populations, y(t), to be normalized
with respect to one another. The equations for 2(1-3) below express
each y(t) as a percentage of the initial population in that trophic level

. .

..scalars in common..
double precision H, xend
integer-l

. .

..local scalars..
integer J, nout

. .
common xend, H,
data nouk )6/

I

z(1) = y(l)/0~5d0
z(2) = y(2)* 10.OdO
z(3) = y(3)* l.0d2

-
ir7ti”~i~ut,i9999) X, (z(J),J=  1,3)
write  (8,99999) x, (z(J), J=l,3)
x = xend - dble(l)OH
]= 1-1
return

99999 format (1H , F8.2, 3E13.5)
end



If (tol.lt.o) write (nout,99995)
If (tol.lt.o)  write (8,99995) .

20 continue
roped = 1

c roped = 1 indicates that routine is using supplied Jac=s:~r-  {in PEDEl?V)
c rather than calculating it internally (which happens w’ne-- mped = O)

write (nout,99993)
write (8,99993)
tol = lo.odo”*(-5)
write (nout,99999) tol
write (8,99999) tol
write (8,99998)
write (nout,99998)
X=o
xend = 1.0d4
y(l) = 50.OdO
y(2) = 10.00d0
y(3) = l.OdO
H = (xend-x)/50
1=49
lfail = 1
call D02EBF(x, xend, N, y, tol, IR, fen, roped, pederv,

● out, W, IW, Ifail)
write (nout,99997)  Ifail
If (tol.lt.o) write (nout,99995)
write (8,99997) Ifail
If (tol.lt.o) write (8,99995)

40 continue
stop

99999 format (22hOCALCULATION WITH TOL=, e8. 1)
99998 format (40h T AND SOLUTION AT EQUALLY SPACED POI>i
99997 format (8h Ifail= 11)
99996 format (4(lx/), 3 lh D02EBF EXAMPLE PROGRAM R.ESUL2K  .-=)
99995 format (24h RANGE TOO SHORT FOR TOL)
99994 format (32hOCALCUMTING  JACOBIAN INTERNALLY)
99993 format (3 lhoCALCULATING  JACOBIAN BY PEDERV)

c

c

c

c
c
c
c

end
subroutine fcn(T, y, F)

..scalar  arguments..
double precision T

..array arguments..
double precision F(3), y(3)

F~i) = 1.00d0*(l.0dO/3  .OdO)*y(l)*(l.OdO-(y  (l)/100.OdC’  . -
+ (1. OdO/lOO.OdO)*y(  l)*y(2)
+ - 0.066666666666667 dO*y(l)
F(2) = (l.OdO\lOO.Odl) *y(l) 0y(2) - ((1. 0dO/36.0dl  )Oy(2;  ~:: : ~) -
+ (4.72222222222 d-2)*y(2)
F(3) = (1.0dO/36.0d2)”y(  2)9y(3) - l.OOdO*(l. OdO/3.6d2)~  1’-
program is now set at steady state, TO mode] a pel-tu~r -—-n
in the phytoplakton  growth rate, replace “1.00d0”  in the ..__= ression
for F(1) (and also in the expression for PW(l, 1), below)
with, for example, “0.98dO” (for a 2% decrease)
return
end
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LxsTmo  OF UnPuTER PR03RAM U- T O  CALCOLATE  TIME PATlls  ?OR

c .. Scalars m common
implicit double precision (a-h, o-z)
double precision H, xend
integer I

c .,.
c ..local  scalars..

double precision tol,  x
integer lfail, IR, IW, roped, nout

c ..local  array s..
double precision W(4,22), y(4)

c ..subroutine references..
c d02ebf
c . .

external fen, out, pederv
common xend, H, 1
open(8, file=’output’)

c Places the output of this program into a file named “output”
data nout /6/
write (nout,99996)
write (8,99996)
write (nout,99994)
write (8,99994)
N=4
IW=22
MPED = O
1R=2
tol = 10. OdO”*(-5)
write (nout,99999)  tol
write (nout,99998)
w-rite (8,99999) tol
write (8,99998)
X=o

c Program is now set to calculate time paths starting with steady-state
c conditions. To calculate “return” paths, replace the values of
c y(l-3) below With post-perturbation values

xend = 2.0d4
y(l) = 500.OdO
y(2) = 100.OdO
y(3) = 10.OdO
y(4) = l.OdO
H = (xend-x)/50
1=49
Ifail = 1
call D02EBF(x, xend, N, y, tol, lR, fen, roped, pederv,

● out, W, IW, lfail)
write (nout,99997) lfail
write (8,99997) lfail
If (tol.lt.o) write (noutc99995)
]f (tol.lt.o) write (8,99995)

20 continue
c This section. which is optional, calculates time points based on values
c Or the Jacobian matrix of the system supplied in “PEDERV”, below

roped = 1
write (nout,99993)
write (8,99993) A-6



tol = 10. OdO”*(-5)
write (nout,99999)  tol
write (8,99999) tol
write (8,99998)
write (nout,99998)
X=o
xend = 2.0d4
y(l) = 500.OdO
y(2) = 100.OdO
y(3) = 10.OdO
y(4) = l.OdO
H = (xend-x)/50
1=49
Ifail = 1
call D02EBF(x, xend, N, y, tol, IR, fen, roped, pederv,

● out, W, IW, Ifail)
write (nout,99997)  Ifail
If (tol.lt.o)  write (nout,99995)
write (8,99997) Ifail
If (tol.lt.o)  write (8,99995)

40 continue
stop

99999 format (22hCALCULATION  WITH ToL=,  e8. I)
99998 format (40h T AND SOLUTION AT EQUALLY SPACED POINTS)
99997 format (8h Ifail= 11)
99996 format (4(lx/), 31h D02EBF  EXAMPLE PROGRAM RESULTS/lx)
99995 format (24h RANGE TOO SHORT FOR TOL)
99994 format (32hCALCULATlNG  JACOBIAN INTERNALLY)
99993 format (31hCALCIJlATING JACOBIAN BY PEDERV)

end
subroutine fcn(T, y, F)

c ..scalar arguments..
double precision T

c ..array arguments..
double precision F(4), y(4)

c . .
c To calculate response to a perturbation in the phytoplankton  growth rate,
c replace “1.00d0”  in F(I), and PW(l, 1) below with, for example “0.98dO”
c (for a -2% perturbation

F(1) = 1.00d0*(l.0dO/3  .OdO)*y(l)*(l.OdO-(y(  l)/100.Odl))  -
+ (1. OdO/lOO.Od  l)*y(l)*y(2)
+ - 0.066666666666667 dO”y(l)
F(2) = (1. 0dO/100.0d2)*y(  l)*y(2)  - ((1. 0dO/36.0d2)*y(2  )*y(3)) -

+ (4.72222222222 d-2)*y(2)
F(3) = (1. 0dO/36.0d3)”y(2  )*y(3)  - ((1.0 dO/1080.0dO)*y(  3)0y(4)) -
+  1.00d0*(l.0dO/5,4  d2)”y(3)
F(4) = (1.0dO/1080.0dl)  0y(3)”y(4) - ((1. OdO/1080.0dO)”y(4))
return
end
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subroutine pederv(x,  Y, PW)
c

c

c

c

c

c
c
c
c
c
c

c
c

c

,.scalar  arguments..
double precision x
..array  arguments..

double precision PW(4,4),  y(4)
.

Pw(l,l) = -1.00 dO”2.0dOO(loOdO/(  3,0dO*100.1dO))  ”y(l) +
+ + 1.00d0°(l.0dO/3  .0dO) - 0.0666666666666667d0
+ - (1. OdO/100.0dl)”y(2)
PW(1,2) = (1. OdO/100.Odl)*y(l)
PW(1,3) = O.OdO
PW(1,4) = O.OdO
PW(2,1) = (1. OdO/100.0d2)*y(2)
PW(2,2) = -(1. OdO/36.0d2)”y(3)  - (4.72222222222d-2) +

+  (1. OdO/100.0d2)”y(l)
PW(2,3) = -(1. OdO/36.0d2)”y(2)
PW(2,4) = O.OdO
PW(3,1) = O.OdO
PW(3,2) = (1.0dO/36.0d3)0y  (3)
PW(3,3) = (1. OdO/36.0d3)*y(2)  - 1.00d0”(l.0dO/5  .4d2)  -
+  (1.0dO/1080.0dO)  0y(4)
PW(3,4) = (1. OdO/1080.0dO)*y(3)
PW(4,1)  = O.OdO
PW(4,2) = O.OdO
PW(4,3) = (1. OdO/1080.0dl)*y(4)
PW(4,4) = (1. OdO/1080.0dl)*y(3)  - (1. OdO/1080,0dO)
return
end
subroutine out(x,  y)

..scalar  arguments..
double precision x, u

..array arguments..
double precision y(4)
double precision z(4)
“u” allows time to be counted “bachards”  for return time paths: 2(1-4)
is a set of variables that allow the time points for y(l-4)  to be
expressed as percentages of the initial populations in each trophic
level

. .

..scalars in common..
double precision H, xend
integer I

. .

..local  scalars..
integer J, nout

.,
common xend,  H, I
data nout /6/
z(l) = y(l)/O.5dl
z(2) = y(2)
z(3) = y(3)* l.Odl
z(4) = y(4)* l.0d2
U = 2.0d3 - X
write (nout,99999)  u, (z(J), J=1,4)
write (8,99999) U, (z(J),  J=1,4)
x = xend - dble(I)OH
1 =1-1
return

99999 format (1H , F8.2, 4E13.5)
end
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